Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

نویسندگان

  • Liang Wang
  • Zishen Li
  • Jiaojiao Zhao
  • Kai Zhou
  • Zhiyu Wang
  • Hong Yuan
چکیده

Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined GPS-Galileo positioning for Location Based Services in urban environment

Position determination is one of the key-elements of Location Based Services (LBS). One popular approach to positioning for LBS is using a Global Navigation Satellite System (GNSS). With such a system, three-dimensional positioning is available anywhere on, and above the Earth, in principle without any local or regional infrastructure. On the other hand, as satellite based radio positioning rel...

متن کامل

An Improved WiFi/PDR Integrated System Using an Adaptive and Robust Filter for Indoor Localization

Location-based services (LBS) are services offered through a mobile device that take into account a device’s geographical location. To provide position information for these services, location is a key process. GNSS (Global Navigation Satellite System) can provide sub-meter accuracy in open-sky areas using satellite signals. However, for indoor and dense urban environments, the accuracy deterio...

متن کامل

GNSS/Electronic Compass/Road Segment Information Fusion for Vehicle-to-Vehicle Collision Avoidance Application

The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to ...

متن کامل

Experimental Studies of Wireless Communication and Gnss Kinematic Positioning Performance in High-mobility Vehicle Environments

In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle ...

متن کامل

A Kalman Filter-Based Short Baseline RTK Algorithm for Single-Frequency Combination of GPS and BDS

The emerging Global Navigation Satellite Systems (GNSS) including the BeiDou Navigation Satellite System (BDS) offer more visible satellites for positioning users. To employ those new satellites in a real-time kinematic (RTK) algorithm to enhance positioning precision and availability, a data processing model for the dual constellation of GPS and BDS is proposed and analyzed. A Kalman filter-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016